Deformation-induced ATP release from red blood cells requires CFTR activity.

نویسندگان

  • Randy S Sprague
  • Mary L Ellsworth
  • Alan H Stephenson
  • Mary E Kleinhenz
  • Andrew J Lonigro
چکیده

Recently, it was reported that rabbit and human red blood cells (RBCs) release ATP in response to mechanical deformation. Here we investigate the hypothesis that the activity of the cystic fibrosis transmembrane conductance regulator (CFTR), a member of the ATP binding cassette, is required for deformation-induced ATP release from RBCs. Incubation of rabbit RBCs with either of two inhibitors of CFTR activity, glibenclamide (10 μM) or niflumic acid (20 μM), resulted in inhibition of deformation-induced ATP release. To demonstrate the contribution of CFTR to deformation-induced ATP release from human RBCs, cells from healthy humans, patients with cystic fibrosis (CF), or patients with chronic obstructive lung disease (COPD) unrelated to CF were studied. RBCs of healthy humans and COPD patients released ATP in response to mechanical deformation. In contrast, deformation of RBCs from patients with CF did not result in ATP release. We conclude that deformation-induced ATP release from rabbit and human RBCs requires CFTR activity, suggesting a previously unrecognized role for CFTR in the regulation of vascular resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release.

Previously, we reported that red blood cells (RBCs) of rabbits and humans release ATP in response to mechanical deformation and that this release of ATP requires the activity of the cystic fibrosis transmembrane conductance regulator (CFTR). It was reported that cAMP, acting through a cAMP-dependent protein kinase, PKA, is an activator of CFTR. Here we investigate the hypothesis that cAMP stimu...

متن کامل

Erythrocytes of humans with cystic fibrosis fail to stimulate nitric oxide synthesis in isolated rabbit lungs.

Erythrocytes (red blood cells) of either rabbits or healthy humans are required to demonstrate the participation of nitric oxide (NO) in the regulation of pulmonary vascular resistance in the isolated rabbit lung. The property of the erythrocyte that is responsible for the stimulation of NO synthesis was reported to be the ability to release ATP in response to physiological stimuli, including d...

متن کامل

Dynamics of shear-induced ATP release from red blood cells.

Adenosine triphosphate (ATP) is a regulatory molecule for many cell functions, both for intracellular and, perhaps less well known, extracellular functions. An important example of the latter involves red blood cells (RBCs), which help regulate blood pressure by releasing ATP as a vasodilatory signaling molecule in response to the increased shear stress inside arterial constrictions. Although s...

متن کامل

cAMP/Protein Kinase A Activates Cystic Fibrosis Transmembrane Conductance Regulator for ATP Release from Rat Skeletal Muscle during Low pH or Contractions

We have shown that cystic fibrosis transmembrane conductance regulator (CFTR) is involved in ATP release from skeletal muscle at low pH. These experiments investigate the signal transduction mechanism linking pH depression to CFTR activation and ATP release, and evaluate whether CFTR is involved in ATP release from contracting muscle. Lactic acid treatment elevated interstitial ATP of buffer-pe...

متن کامل

Two pathways for ATP release from host cells in enteropathogenic Escherichia coli infection.

We previously reported that enteropathogenic Escherichia coli (EPEC) infection triggered a large release of ATP from the host cell that was correlated with and dependent on EPEC-induced killing of the host cell. We noted, however, that under some circumstances, EPEC-induced ATP release exceeded that which could be accounted for on the basis of host cell killing. For example, EPEC-induced ATP re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The American journal of physiology

دوره 275 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1998